4.5 Graph Using Slope-Intercept Form

Goal: Graph linear equations using slope-intercept form.

VOCABULARY

Slope-intercept form
\[y = mx + b \]

Linear Equation

Parallel lines: are lines that never intersect.
* THE SYMBOL \(\parallel \) lines
* \(\parallel \) lines have the same slope

FINDING THE SLOPE AND Y-INTERCEPT OF A LINE

Words
A linear equation of the form \(y = mx + b \) is written in **SLOPE INTERCEPT FORM**.

Symbols
\[y = mx + b \]

Example: \(y = \frac{2}{3}x + 5 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-3)</th>
<th>(0)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>(\frac{5}{3})</td>
<td>(5)</td>
<td>(\frac{11}{3})</td>
</tr>
</tbody>
</table>

Slope: \(m = \frac{2}{3} \)

Y-intercept: \(b = 5 \)

Graph

STEP I: Plot the y-intercept \((0, b) \)

STEP II: Use slope to find other points
\(m = \frac{\text{Rise}}{\text{Run}} \)
Example 1 Identify slope and y-intercept
Identify the slope and y-intercept of the line with the given equation.

\[a. \ y = x + 3 \]

Solution

\[a. \ The \ equation \ is \ in \ the \ form \ \text{Slope Intercept}. \ So, \ the \ slope \ of \ the \ line \ is \ 1, \ and \ the \ y-intercept \ is \ 3. \]

\[b. \ -2x + y = 5 \]

Solution

\[b. \ Rewrite \ the \ equation \ in \ slope-intercept \ form \ by \ solving \ for \ y. \ ISOLATE \ y! \]

\[-2x + y = 5 \]

\[\begin{align*}
 +2x & \quad +2x \\
 \underline{y} & = 2x + 5
\end{align*} \]

The line has a slope of \(_2\) and a y-intercept of \(_5\).

Checkpoint Identify the slope and y-intercept of the line with the given equation.

\[Y = \text{m}x + b \]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (y = 4x - 1)</td>
<td>2. (4x - 2y = 8)</td>
</tr>
<tr>
<td>[M = 4]</td>
<td>[M = 2]</td>
</tr>
<tr>
<td>[b = -1]</td>
<td>[b = -4]</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. (4y = 3x + 16)</td>
<td>4. (6x + 3y = -21)</td>
</tr>
<tr>
<td>[M = \frac{3}{4}]</td>
<td>[M = -2]</td>
</tr>
<tr>
<td>[b = 4]</td>
<td>[b = -7]</td>
</tr>
</tbody>
</table>
Example 2
Graph an equation using slope-intercept form

Graph the equation $4x + y = 2$.

Solution

Step 1
Rewrite the equation in slope-intercept form.

\[
y = -4x + 2
\]

Step 2
Identify the slope and the y-intercept.

\[
m = \frac{-4}{1} = \frac{\text{rise}}{\text{run}} \quad b = 2
\]

Step 3
Plot the point that corresponds to the y-intercept, $(0, 2)$.

Step 4
Use the slope to locate a second point on the line.

Draw a line through the two points.

\[
M = \frac{\text{rise}}{\text{run}} = \frac{-4}{1} = -4
\]

Checkpoint Complete the following exercise.

5. Graph the equation $-\frac{1}{2}x + y = 1$.

\[
y = \frac{1}{2}x + 1
\]

\[
m = \frac{1}{2} \\
B = 1
\]
Example 3: Identify parallel lines

Determine which of the lines are parallel.

Line A: through $(-2, -3); (4, 3)$
Line B: through $(-4, -2); (2, 4)$
Line C: through $(-3, -5); (6, 2)$

Solution

Find the slope of each line.

Line a: $m = \frac{\Delta y}{\Delta x} = \frac{-3 - 3}{-2 - 4} = \frac{-6}{-6} = 1$

Line b: $m = \frac{-2 - 4}{-4 - 2} = \frac{-6}{-6} = 1$

Line c: $m = \frac{5 - (-2)}{-3 - 6} = \frac{-7}{-9} = \frac{7}{9}$

$\text{Lines } a \text{ and } b \text{ have the same slope. They are parallel.}$

Checkpoint: Complete the following exercise.

6. Determine which lines are parallel. Explain!

Line a: through $(2, 5)$ and $(-2, 2)$
Line b: through $(4, 1)$ and $(-3, -4)$
Line c: through $(2, 3)$ and $(-2, 0)$

$\text{a) } m = \frac{5 - 2}{2 - (-2)} = \frac{3}{4} \quad (m = \frac{3}{4})$

$\text{b) } m = \frac{1 - (-4)}{4 - (-3)} = \frac{5}{7} \quad (m = \frac{5}{7})$

$\text{Lines } a \text{ and } c \text{ are } \parallel$