
II. Does the data provide convincing evidence of an association between anger level and heart disease in the population of interest? Conduct an appropriate chi-square test to find out.
3. Conditions

- RANDOM SAMPLE OF 8,474 PEOPLE WITH NORMAL BLOOD Pressure
- INDEPENDENT: SAMPLING WITH OUT REPLACEMENT. ChECK $10 \%$ CONDITION. THERE ARE MORE THAN $10(8474)=84,440$ people with normal $B P$.
- LARGE SAMPLZ - ALL EXPRCTEO COUNTS ARE GREATER THAN 5. SEE THE TABLE ABOVE

Pl

On FRQ's write the Chi-Square Formula
4. Mechanics

- Name the test: $\rightarrow \mathscr{L}^{2}$ TEST OF INDEPENDENCE (OR ASSOCIATION)
- Significance level: $\alpha=.05$
- Sketch the graph ( $x^{2}$ graph is option d)
- Degrees of freedom $d f=(3-1)(2-1)=2$
- Test Statistic

$$
x^{2}=\frac{(53-69.7)^{2}}{69.7}+\cdots=16.08
$$



- P-value

$$
\text { Pualue }=P\left(x^{2}>16.08\right)=.00032
$$

STAT TESTS $x^{2}$-TEST
5. Conclusion in context and less than alpha equal . 05
SINCE THE PVALUE IS VERY SMALL, WE RESECT HO.
ANA CONCLUDE THAT ANGER R LEVEL AND HEART Disease are not Independent. There is Sufficient eutaence To Conccuar that ancer LEvEL AND HEART DISEASE ARE ASSOCIATED IN THE POPULATION OF PEOPLE WITH NORMAL Blood Pressure
III. $\chi^{\mathbf{2}}$ Test for Independence from start to finish - CYU page 718

Ho: THERE IS NO ASSOCIATION BETWEEN EXCLUSIVE TERRITURY AND FRAN CHISES SUCCESS in new franchise firms (VARIABLES ARE INDEPENDENT)
Ha: THERE IS AN ASSociation between the 2 variables
Conditions
Random - Sample of new franchises
Independent - there are more than $10(170)$ new franchises in the U.S.
Large Sample - the expected Counts are all above 5. Expected Counts: $102.7,20.3,39.3$, and 7.74 .
III. $\chi^{2}$ Test for Independence from start to finish - CYU page 718 (cont.)

TEST: $x^{2}$ TEST FUR INDEPENDENCE

$$
\begin{gathered}
\alpha=.01 \\
d f=(2-1)(2-1)=1 \\
x^{2}=\frac{(108-102.7)^{2}}{102.7}+\cdots=5.91 \\
\text { puclue }=p\left(x^{2}>5.91\right)=.015 \\
x^{2 d 5} \quad \text { pribution pale }=.015
\end{gathered}
$$

Conclude: Since the pualue (.015) is greater than $\alpha=.01$, Fail to Reject Ho. We do not have enough eurdence to conclude that there is an association between whether a franchise will be success full and whether the franchise has an exclusive territory These 2 variables appear to be indendent.

$$
\begin{array}{|c|}
P(A)=P(A \mid B) \\
P(\text { success })=\frac{123}{170}=.72 \\
P(\text { success } / \text { exclusive } \\
108 / 123 .=.76
\end{array}
$$

Referring back to the probability definition
IV. Choose the Correct $\chi \mathbf{2}$ Test

Example: Online social networking
An article in the Arizona Daily Star (April 9, 2009) included the following table:

|  | $18-24$ | $25-34$ | $35-44$ | $45-54$ | $55-64$ | $65+$ | Total |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Use Online Social Networks | 137 | 126 | 61 | 38 | 15 | 9 | 386 |
| Do Not Use Online Social Networks | 46 | 95 | 143 | 160 | 130 | 124 | 698 |
| Total | 183 | 221 | 204 | 198 | 145 | 133 | 1084 |

Suppose that you decide to analyze this data using a chi-square test. However, without any additional information about how the data was collected, it isn't possible to know which chi-square test is appropriate.

## Problem:

(a) Explain how you know that a goodness-of-fit test is not appropriate for analyzing these data.

- Since there are either two variables or two or more populations, a goodness-of-fit test is not appropriate.
- Goodness-of-fit tests are only appropriate when analyzing the distribution of one variable in one population.
(b) Describe how these data could have been collected so that a test for homogeneity is appropriate.
- To make a test for homogeneity appropriate, we would need to take 6 independent random samples, one from each age category, and then ask each person whether or not they use online social networks.
- Or to make a test for homogeneity, we could take 2 independent random samples, one of online social network users and one of people that do not use online social networks, and ask each member of each sample how old they are.
(c) Describe how these data could have been collected so that a test for association/ independence is appropriate.
- To make a test for association/independence appropriate:
- we would take one random sample from the population and
- ask each member about their age and whether or not they use online social networks.
- This seems like the most reasonable method to collect the data, so a test of association/independence is probably the best choice. But, we can't know for sure unless we know how the data were collected.

In a study reported by the Annals of Emergency Medicine (March 2009), researchers conducted a randomized, double-blind clinical trial to compare the effects of ibuprofen and acetaminophen plus codeine as a pain reliever for children recovering from arm fractures. There were many response variables recorded, including the presence of any adverse effect, such as nausea, dizziness, and drowsiness. Here are the results:

|  | Ibuprofen | Acetaminophen plus Codeine | Total |
| :---: | :---: | :---: | :---: |
| Adverse effects | 36 | 57 | 93 |
| No adverse <br> effects | 86 | 55 | 141 |
| Total | 122 | 112 | 234 |

## Problem:

a) Explain why it was important to investigate this question with a randomized, double-blind clinical trial.

- IMPORTANCE OF RANDOMIZED EXPERIMENT
- It is important that the treatments in an experiment be randomly assigned so that the two treatment groups are roughly equivalent at the beginning of the study.
- Randomization reduced the effects of lurking (confounding) variables because these extraneous varibles should be balanced out among the two groups.
- IMPORTANCE OF DOUBLE-BLINDING
- It is also important that both the patients and those administering the drugs and measuring the response do not know who is receiving which treatment.
- This will keep the expectations the same for both groups of patients and not favor one treatment over the other.

Is the difference between the two groups statistically significant?
b) Conduct a Chi-square Test Homogeneity.
c) Conduct a 2-Sample Z-test for the difference of proportions.
d) Why do these 2 test provide the same results?
b) State: $\chi^{2}$ Test for Homogeneity using $\alpha=0.05$ :

Ho: There is no difference in the proportions of patients like these who suffer adverse effects when taking ibuprofen or acetaminophen plus codeine.
Ha: There is a difference in the proportions...
Conditions:

- Random: The treatments were assigned at random.
- Independent: Knowing if one subject had an adverse effect shouldn't give any additional information about the responses of other subjects, so the observations can be considered independent.
- Large Sample Size The expected counts (listed below) are all at least 5.

| Expected counts | Ibuprofen | Acetaminophen plus Codeine |  |
| :---: | :---: | :---: | :---: |
| Adverse effects | 48.5 | 44.5 | 97.5 |
| No adverse effects | 73.5 | 112 | 141 |
| Total | 122 |  | 234 |

Calculation:

- $\underline{\text { Test Statistic }} \chi^{2}=\frac{(36-48.5)^{2}}{48.5}+\cdots=11.15$
- $\underline{P-v a l u e ~} \mathrm{df}=(2-1)(2-1)=1$

$$
P \text {-value }=\mathrm{P}\left(\chi^{2}>11.15\right)=0.0008 \quad \chi^{2} \operatorname{cdf}(11.15, \mathrm{e} 99,1)
$$

Conclude: Because the $P$-value is less than $\alpha=0.05$, we reject $H_{0}$. We have convincing evidence that there is a difference in the proportions of patients like these who suffer adverse effects when taking ibuprofen or acetaminophen plus codeine.
c) State: 2-Sample Z-test for the difference of proportions using $\alpha=\mathbf{0 . 0 5}$ :
$\mathbf{p}_{I}=$ the true proportion of adverse effects for I bup users
$\mathbf{p}_{\mathbf{A}}=$ the true proportion of adverse effects for Acet. Users

$$
\begin{aligned}
& H_{0}: p_{I}-p_{A}=0 \\
& H_{a}: p_{I}-p_{A} \neq 0
\end{aligned}
$$

Conditions: :

- Random: same
- Independent: same
- Normal: Successes and failures are all greeter than $10-$

$$
36,86,57,55
$$

Calculation:

- Pooled Proportion

$$
\begin{aligned}
& \hat{P}_{I}=\frac{36}{122}=.295 \\
& \hat{P}_{A}=\frac{57}{112}=.509
\end{aligned}
$$

$$
\hat{P}_{C}=\frac{36+57}{122+112}=.397
$$



- Test Statistic
$P=84 E^{-4} 4$ Conclude: same

$$
-3.34
$$

$$
\hat{p}_{1}=295
$$

- Since we are comparing the proportion of subjects with adverse effects for just two treatments, we can also use a two-sample $z$ test for the following hypotheses:
$\hat{p}_{2}-109$
$\left.\begin{array}{l}\hat{\mathrm{p}}_{2}=.397 \\ \tau_{\text {This is }}\end{array}\right\}$
- The $P$-value is exactly the same as the $P$-value from the chi-square test and $z^{2}=(-3.339)^{2}=11.15=\chi^{2}$.

$$
\begin{aligned}
& z=\frac{.295-.509}{\sqrt{(.397)(.603)} \sqrt{\frac{1}{122}+\frac{1}{112}}}=\frac{-.214}{.064}=-3.34 \\
& \text { - } \quad \text { P-value } \quad P \text {-value }=P(z<-3.34) \\
& \text { Normatedf }(-E 99,-3.34,0,1) \\
& =, 00042
\end{aligned}
$$

