6.3 Geometric Activity

Let's examine the geometric distributions for varying probabilities of defective light bulbs. Find when the first defective light bulb occurs as we sample light bulbs from a large population.

1. Create the geometric distribution for the probability of 10% defective bulbs by entering the following into your calculator.

L1: X $1 \begin{array}{llllllllllllllllllll} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20(X \text { continues to infinity, but this will give us an idea of these distributions) }\end{array}$ L2: $P(X)$ geometpdf(.1,L1) (be sure to go on top of L2)
2. Create a histogram of this distribution and sketch below

Use: Xlist: L1 \& Freq: L2
Window: xmin: 0, xmax: 21, xscl: 1, ymin: 0, ymax: 1, yscl: 0.1
3. Calculate the mean and standard deviations for probability distribution. 1-Var Stats> List:[L1] FreqList:[L2] > $\mu=\Sigma x=$ \qquad $\sigma X=$ \qquad
4. Repeat steps 1-3 for the remaining probabilities then answer the questions below.

HIGHLIGHTED BOXES BASED ON
FORMULA's - as the \%'s increase the formula and the estimates from our data become closer and closer. Think!
5. What do you notice about the geometric distributions as the probability of success (defective) increases (shape, center, and spread)?

- As the probability for the first defective light bulb increases (from 10% to 90% defective), the mean decreases (from 10 to close to 1), the spread becomes very narrow, and the shape becomes less skewed right and more peaked at the mean.

6. What are the parameter(s) for geometric models? What are the formulas for the mean and standard deviations for geometric distributions?
Geometric Distribution is $G(p): \quad E(X)=\mu=1 / p \quad \operatorname{VAR}(X)=\sigma^{2}=q / p^{2} \quad q=(1-p)$
